Webinar: How big data and AI improve perioperative management and outcome

Webinar on How big data and AI improve perioperative management and outcome

18.00 – 19.00 CET

Add to Calendar


Scientific Faculty


Prof Teodora O Nicolescu

ESAIC eLearning Committee member

Dept of Anaesthesiology, Oklahoma University Health Sciences Center



Prof. Elena Giovanna Bignami

Director of the School of Specialization in Anesthesia Intensive Care and Pain 

President of the Nursing Course, Department of Medicine and Surgery 

University Hospital of Parma 


Dr. Matthieu Komorowski

Consultant in Intensive Care 

Charing Cross Hospital – Imperial College London 


Target Audience

Anesthesiologists, residents, nurse anaesthetists 


Key points

  • Utilization of high-quality data collection as predictive models for perioperative patient management 
  • Efficient and discrete data sampling for perioperative patient course assessment 
  • Extrapolate the current knowledge for future data modelling and more expansive AI use(Watson) 


About this webinar

The webinar will inform the audience of the newest predictive models for perioperative patient management and how to effectively use data collection to review and improve  both quality of care and patient safety. 



Artificial intelligence has been an adjuvant for a multitude of scientific fields, anesthesiology being one of those. The aspects AI  applications that are most useful are: 

  1. Depth of anaesthesia monitoring and control of anaesthesia 
  2. Event and risk prediction 
  3. Ultrasound guidance 
  4. Pain management 
  5. Operating room logistics 

Artificial intelligence has the potential to not only impact perioperative management but the intensive care unit as well. 

The webinar will describe: 

The importance of appropriate data mining and collection, using such data for predictive modelling that aids not only in the perioperative patient management, pain control or ICU course but also in ultimately identifying risk during the preoperative patients’ evaluation. 

As AI is progressing to supercomputer use, anesthesiologists will have to adapt to a new way of practice and be aware of both the advantages and limitations of AI use. 


Learning Objectives

This webinar will enable anaesthesiologists and intensivists to: 

  1. Identify which data collection most effectively can aid in perioperative patient management 
  2. Describe the predictive modelling, its utilization and its impact on the quality of care 
  3. Apply the principles of predictive modelling to daily patient care management 


Practical skills to be acquired after attending this Webinar

This webinar will enable participants to:

  • Create predictive models which are effective aids 
  • Demonstrate the impact of AI use in improving the quality of care 
  • Obtain new skills related to data mining and collection 


Affective skills acquired after attending this Webinar

The participant is aware of:

  • Importance of the specifications and use of data collection 
  • Advocating for patient safety of the use of predictive models 
  • Need to reflect on the future shaping of the field of anesthesiology by new supercomputers AI such as Watson 

The participant will be able to: 

  • Evaluate the impact of predictive models on patient management 
  • Specify challenging aspects or limitations of models 
  • Test the resilience of predictive models in long term utilization 


Needs analysis

Anesthesiology as a field is well-positioned to potentially benefit from advances in artificial intelligence as it touches on multiple elements of clinical care, including perioperative and intensive care, pain management, and drug delivery and discovery. The webinar is a scoping review of the literature at the intersection of artificial intelligence and anaesthesia with the goal of identifying techniques from the field of artificial intelligence that is being used in anaesthesia research and their applications to the clinical practice of anesthesiology. 


Technical Settings

This webinar is available on PC, Tablet and smartphones. 

For the best viewing experience, a high-speed internet connection is required. 


This Webinar is supported by an unrestricted educational grant by GE Healthcare.